SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lundqvist Peter) ;pers:(Lundqvist Peter);pers:(Fraser M.)"

Search: WFRF:(Lundqvist Peter) > Lundqvist Peter > Fraser M.

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cai, Y-Z., et al. (author)
  • AT 2017be-a new member of the class of intermediate-luminosity red transients
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:3, s. 3424-3445
  • Journal article (peer-reviewed)abstract
    • We report the results of our spectrophotometric monitoring campaign for AT 2017be in NGC 2537. Its light curve reveals a fast rise to an optical maximum, followed by a plateau lasting about 30 d, and finally a fast decline. Its absolute peak magnitude (M-r similar or equal to -12 mag) is fainter than that of core-collapse supernovae, and is consistent with those of supernova impostors and other intermediate-luminosity optical transients. The quasi-bolometric light-curve peaks at similar to 2 x 10(40) erg s(-1), and the late-time photometry allows us to constrain an ejected Ni-56 mass of similar to 8 x 10(-4)M(circle dot). The spectra of AT 2017 be show minor evolution over the observational period, a relatively blue continuum showing at early phases, which becomes redder with time. A prominent H alpha emission line always dominates over other Balmer lines. Weak Fe II features, Can H&K, and the Ca II NIR triplet are also visible, while P-Cygni absorption troughs are found in a high-resolution spectrum. In addition, the [Ca II] lambda lambda 7291, 7324 doublet is visible in all spectra. This feature is typical of intermediate-luminosity red transients (ILRTs), similar to SN 2008S. The relatively shallow archival Spitzer data are not particularly constraining. On the other hand, a non-detection in deeper near-infrared HST images disfavours a massive Luminous Blue Variable eruption as the origin for AT 2017be. As has been suggested for other ILRTs, we propose that AT 2017be is a candidate for a weak electron-capture supernova explosion of a superasymptotic giant branch star, still embedded in a thick dusty envelope.
  •  
2.
  • Cai, Y.-Z., et al. (author)
  • Intermediate-luminosity red transients : Spectrophotometric properties and connection to electron-capture supernova explosions
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 1040 erg s−1 and their total radiated energies are on the order of (0.3–3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10−4 to 10−3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s−1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
  •  
3.
  • Kangas, T., et al. (author)
  • Gaia16apd-a link between fast and slowly declining type I superluminous supernovae
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:1, s. 1246-1258
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet (UV), optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (= SN 2016eay), covering its evolution from 26 d before the g-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transient Survey (NUTS). It is one of the closest SLSNe known (z = 0.102 +/- 0.001), with detailed optical and UV observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O II absorption, and reaches a peak M-g = -21.8 +/- 0.1 mag. However, photometrically it exhibits an evolution intermediate between the fast and slowly declining type Ic SLSNe, with an early evolution closer to the fast-declining events. Together with LSQ12dlf, another SLSN with similar properties, it demonstrates a possible continuum between fast and slowly declining events. It is unusually UV-bright even for an SLSN, reaching a non-K-corrected M-uvm2 similar or equal to -23.3 mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. Assuming that Gaia16apd was powered by magnetar spin-down, we derive a period of P = 1.9 +/- 0.2 ms and a magnetic field of B = 1.9 +/- 0.2 x 10(14) G for the magnetar. The estimated ejecta mass is between 8 and 16 M circle dot, and the kinetic energy between 1.3 and 2.5 x 10(52) erg, depending on opacity and assuming that the entire ejecta is swept up into a thin shell. Despite the early photometric differences, the spectra at late times are similar to slowly declining type Ic SLSNe, implying that the two subclasses originate from similar progenitors.
  •  
4.
  • Kangas, T., et al. (author)
  • Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy : the big brother of SN 1998S
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 323-346
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for Co-56 decay with full. gamma-ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (similar to 8000 km s(-1)) H alpha emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of A(V) = 2.9 +/- 0.2 mag and an age of 10(+ 3) (- 2) Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = - 20.46 +/- 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C. We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near- infrared excess, possibly due to newly condensed dust.
  •  
5.
  • Kankare, E., et al. (author)
  • A population of highly energetic transient events in the centres of active galaxies
  • 2017
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:12, s. 865-871
  • Journal article (peer-reviewed)abstract
    • Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of similar to 2.3 x 10(52) erg. The slow evolution of its light curve and persistently narrow spectral lines over similar to 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.
  •  
6.
  • Kankare, E., et al. (author)
  • SN 2009kn-the twin of the Type IIn supernova 1994W
  • 2012
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:2, s. 855-873
  • Journal article (peer-reviewed)abstract
    • We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning similar to 1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum similar to 1000 km s-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Contrarily, the photometric evolution resembles more that of a Type IIP SN with a large drop in luminosity at the end of the plateau phase. These characteristics are similar to those of SN 1994W, whose nature has been explained with two different models with different approaches. The well-sampled data set on SN 2009kn offers the possibility to test these models, in the case of both SN 2009kn and SN 1994W. We associate the narrow P Cygni lines with a swept-up shell composed of circumstellar matter and SN ejecta. The broad emission line wings, seen during the plateau phase, arise from internal electron scattering in this shell. The slope of the light curve after the post-plateau drop is fairly consistent with that expected from the radioactive decay of 56Co, suggesting an SN origin for SN 2009kn. Assuming radioactivity to be the main source powering the light curve of SN 2009kn in the tail phase, we infer an upper limit for 56Ni mass of 0.023 M?. This is significantly higher than that estimated for SN 1994W, which also showed a much steeper decline of the light curve after the post-plateau drop. We also observe late-time near-infrared emission which most likely arises from newly formed dust produced by SN 2009kn. As with SN 1994W, no broad lines are observed in the spectra of SN 2009kn, not even in the late-time tail phase.
  •  
7.
  • Kool, Erik C., et al. (author)
  • AT 2017gbl : a dust obscured TDE candidate in a luminous infrared galaxy
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:2, s. 2167-2195
  • Journal article (peer-reviewed)abstract
    • We present the discovery with Keck of the extremely infrared (IR) luminous transient AT 2017gbl, coincident with the Northern nucleus of the luminous infrared galaxy (LIRG) IRAS 23436+5257. Our extensive multiwavelength follow-up spans ∼900 d, including photometry and spectroscopy in the optical and IR, and (very long baseline interferometry) radio and X-ray observations. Radiative transfer modelling of the host galaxy spectral energy distribution and long-term pre-outburst variability in the mid-IR indicate the presence of a hitherto undetected dust obscured active galactic nucleus (AGN). The optical and near-IR spectra show broad ∼2000 km s−1 hydrogen, He i, and O i emission features that decrease in flux over time. Radio imaging shows a fast evolving compact source of synchrotron emission spatially coincident with AT 2017gbl. We infer a lower limit for the radiated energy of 7.3 × 1050 erg from the IR photometry. An extremely energetic supernova would satisfy this budget, but is ruled out by the radio counterpart evolution. Instead, we propose AT 2017gbl is related to an accretion event by the central supermassive black hole, where the spectral signatures originate in the AGN broad line region and the IR photometry is consistent with re-radiation by polar dust. Given the fast evolution of AT 2017gbl, we deem a tidal disruption event (TDE) of a star a more plausible scenario than a dramatic change in the AGN accretion rate. This makes AT 2017gbl the third TDE candidate to be hosted by a LIRG, in contrast to the so far considered TDE population discovered at optical wavelengths and hosted preferably by post-starburst galaxies.
  •  
8.
  • Mattila, S., et al. (author)
  • A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
  • 2018
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6401, s. 482-485
  • Journal article (peer-reviewed)abstract
    • Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
  •  
9.
  • Onori, F., et al. (author)
  • The nuclear transient AT 2017gge : a tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 517:1, s. 76-98
  • Journal article (peer-reviewed)abstract
    • We present the results from a dense multwavelength [optical/UV, near-infrared (IR), and X-ray] follow-up campaign of the nuclear transient AT 2017gge, covering a total of 1698 d from the transient's discovery. The bolometric light curve, the blackbody temperature and radius, the broad H and He i lambda 5876 emission lines and their evolution with time, are all consistent with a tidal disruption event (TDE) nature. A soft X-ray flare is detected with a delay of similar to 200 d with respect to the optical/UV peak and it is rapidly followed by the emergence of a broad He ii lambda 4686 and by a number of long-lasting high ionization coronal emission lines. This indicate a clear connection between a TDE flare and the appearance of extreme coronal line emission (ECLEs). An IR echo, resulting from dust re-radiation of the optical/UV TDE light is observed after the X-ray flare and the associated near-IR spectra show a transient broad feature in correspondence of the He i lambda 10830 and, for the first time in a TDE, a transient high-ionization coronal NIR line (the [Fe xiii] lambda 10798) is also detected. The data are well explained by a scenario in which a TDE occurs in a gas-and-dust rich environment and its optical/UV, soft X-ray, and IR emission have different origins and locations. The optical emission may be produced by stellar debris stream collisions prior to the accretion disc formation, which is instead responsible for the soft X-ray flare, emitted after the end of the circularization process.
  •  
10.
  • Pastorello, A., et al. (author)
  • Forbidden hugs in pandemic times I. Luminous red nova AT 2019zhd, a new merger in M 31
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Journal article (peer-reviewed)abstract
    • We present the follow-up campaign of the luminous red nova (LRN) AT 2019zhd, the third event of this class observed in M 31. The object was followed by several sky surveys for about five months before the outburst, during which it showed a slow luminosity rise. In this phase, the absolute magnitude ranged from M-r=-2.8 +/- 0.2 mag to M-r=-5.6 +/- 0.1 mag. Then, over a four to five day period, AT 2019zhd experienced a major brightening, reaching a peak of M-r=-9.61 +/- 0.08 mag and an optical luminosity of 1.4x10(39) erg s(-1). After a fast decline, the light curve settled onto a short-duration plateau in the red bands. Although less pronounced, this feature is reminiscent of the second red maximum observed in other LRNe. This phase was followed by a rapid linear decline in all bands. At maximum, the spectra show a blue continuum with prominent Balmer emission lines. The post-maximum spectra show a much redder continuum, resembling that of an intermediate-type star. In this phase, H alpha becomes very weak, H beta is no longer detectable, and a forest of narrow absorption metal lines now dominate the spectrum. The latest spectra, obtained during the post-plateau decline, show a very red continuum (T-eff approximate to 3000 K) with broad molecular bands of TiO, similar to those of M-type stars. The long-lasting, slow photometric rise observed before the peak resembles that of LRN V1309 Sco, which was interpreted as the signature of the common-envelope ejection. The subsequent outburst is likely due to the gas outflow following a stellar merging event. The inspection of archival HST images taken 22 years before the LRN discovery reveals a faint red source (M-F555W=0.21 +/- 0.14 mag, with F555W-F814W=2.96 +/- 0.12 mag) at the position of AT 2019zhd, which is the most likely quiescent precursor. The source is consistent with expectations for a binary system including a predominant M5-type star.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view